# 創業失敗後我才懂:眼界決定天花板,我為什麼每天追蹤全球AI資訊

我還記得創業失敗那段時間的感受。不是因為產品不好、不是因為技術不行,而是坐在台灣辦公室裡,我們一直在和自己玩。後來才明白,我們根本不知道世界在幹什麼。

那次失敗其實給了我一個很狠的一巴掌。當時我在想,為什麼同樣的想法,美國已經有人做出來了?為什麼我們總是慢半拍?答案很簡單:因為我們的眼界卡在台灣。市場小、資訊晚、決策也慢。當全球創業者都在衝的時候,我們還在看去年的新聞。

▋ 出國工作改變了我的視角

後來我出國工作了一段時間。這段經歷改變了我對「資訊」的理解。我才發現,其實我們缺的根本不是聰明才智,缺的就是「第一線的資訊」。差一天拿到資訊和晚兩個禮拜拿到資訊,在創業的世界裡可能就是生死之差。

在國外的日子,我開始習慣每天刷Twitter、看最新的Hacker News、追蹤業界的關鍵人物。那時候我才真正體會到,資訊戰其實就在發生——那些走在前面的人,就是因為他們比別人早知道一些東西。而我之前根本沒意識到這一點。

▋ 決定做一個「資訊轉運站」

所以才有了現在的頻道。與其每個人都像我一樣累死累活地四處尋找資訊,不如我來幫大家把全球最前沿的東西篩一遍、整理一遍、傳下去。

這個頻道的邏輯很簡單:Twitter上每天都有最新的AI趨勢和產業動態,我會盯著;YouTube上那些國際大咖的最新教學和案例分享,我會挑出精華給你們;然後加上我自己這些年試過的AI工具經驗和踩過的坑。這樣一來,大家就不用像我當年那樣,花一年時間才明白的東西,你們可能三個月就吸收到了。

說白了,我就是在幫大家「減少資訊的獲取成本」。

▋ 為什麼要這樣做

老實說,這也是為了我自己。AI相關的資訊實在太爆炸了。每天新工具、新模型、新應用層出不窮,你根本追不完。如果沒有一個系統的方式去篩選和整理,最後的結果就是淹沒在資訊海裡,什麼都看但什麼都沒記住。

所以我一直在試著建造一套流程——不是要我花更多時間,反而是要用更聰明的方式,確保吸收到的都是真正有價值的資訊。這套流程對我有用,對你們應該也有用。

我希望創業的人、想跟上時代的人,都可以在這邊每天吸收到最新、最豐富、最實用的東西。不是為了看起來很厲害,而是真的能用上。

▋ 不止於資訊,還有更多可能

但坦白講,光分享資訊還不夠。資訊終究只是資訊,真正的價值在於做點什麼。所以這個頻道的另一層目的,是我想和大家一起,基於這些資訊去開發真正有用的SaaS服務。

我不是想開一個資訊聚合網站就完了。我想的是,當我們都吸收到同一套資訊、看到同樣的機會之後,我們能不能一起把想法變成產品?那才是真正的價值。

所以我們現在做的,只是第一步。未來可能會看到一些新的工具、新的服務從這裡誕生。

▋ 邀請你們一起參與

如果你有什麼建議,或者有想看到的資訊方向,真的很歡迎說出來。我不是想一個人決定頻道的走向,這應該是大家一起共同創造的東西。

也許你想看更多的案例分享?也許你想深入某個特定的AI領域?也許你根本有更好的想法?都歡迎。我們可以一起在這邊成長,一起發現機會,甚至一起把機會變成生意。

這不只是一個資訊頻道,更像是一個面向全球、但根植於台灣的創業者社群。我們一起看世界,然後一起做點什麼。

Read more

如何在 10 個指標看出 OpenAI Agent Kit 能否「扳倒」n8n?一次看懂 2 大代理人平台的勝負關鍵

如何在 10 個指標看出 OpenAI Agent Kit 能否「扳倒」n8n?一次看懂 2 大代理人平台的勝負關鍵

在最新的比較實測中,AI 自動化創作者 Nate Herk(Nate Herk | AI Automation)直言:「In short, my answer is no.」──他認為 OpenAI 在 2025-10-06 推出的 Agent Kit 並不會直接取代已存在多年的開源自動化平台 n8n(初版 2019-10-08)。本文將重組 Nate 的實測內容,逐項分析兩者在使用者門檻、觸發器、工具整合、模型支援、前端嵌入(UI)與部署控制等關鍵面向,並呈現評分數據與原文引言,供想選用或評估平台的讀者做出判斷。 * Agent Kit(OpenAI Agent Builder)發布日:2025-10-06。設計定位:以「快速、視覺化、

By andy

# N8N 還是 Claude Code?選錯一個,你會在維護時哭出來——實戰經驗談

前陣子有位網友問我一個問題,我當時停頓了一下,因為我意識到這個問題問得很好。他問:「到底什麼時候該用 N8N,什麼時候該用 Claude Code?」 我一開始想給出一個簡單的答案,但後來發現——其實沒有簡單答案。真正的分水嶺,不在工具本身,而在於你後來會怎麼活著跟這個東西相處。 ▋ 關鍵不是技術,是你的記憶 想像一下這個場景:你今天花了整個下午設計一個自動化流程。邏輯很複雜,涉及多個 API 串接、條件判斷、資料轉換。當時你腦子很清楚,一切都有道理。然後一周後,你的主管說:「欸,那個流程能不能改一下?」 你打開檔案。看著自己寫的程式碼或配置。三秒鐘後,你的腦子一片空白。 「我當時為什麼要這樣設定?」 這時候,如果你用的是 N8N,你會慶幸自己的決定。因為整個流程就像樂高積木一樣擺在你面前,一眼就能看懂每一步在幹什麼。「啊,這裡是連接 Google Sheets,那裡是做資料過濾,這邊是呼叫 AI API。

By andy

# 我用 Gemini API 破解了 YouTube 影片秒找關鍵畫面的問題——花了一年才想通的事

在我開始用 Gemini 的 API 之前,我其實在這個問題上卡了很久。你知道那種感覺嗎?就是你明確知道自己想要什麼,但市面上的工具就是不給你。 ▋ 那些沒辦法的時代 最一開始,我想做的事很簡單——從 YouTube 影片裡自動找出特定的畫面。聽起來沒什麼,但當你開始想要把它實際執行出來的時候,馬上就撞牆了。OpenAI 的模型?它們根本不讓你直接處理影片內容。Anthropic 的 Claude?同樣的問題,他們也會限制你對影片的存取權限。就像被隔著一層玻璃,明明看得到東西卻摸不著。 我試過各種繞路。有段時間我想用影片截圖搭配 OCR 去識別,但那效率慘到不行。也想過自己寫爬蟲去抓影片的文字敘述檔,但 YouTube 上大多影片根本沒有,或者敘述檔品質爛到不能用。那段時間我真的很挫折,感覺就像在黑暗裡摸索,不知道哪條路才是出口。 大概花了快要一年的時間,我一直在想同一個問題,嘗試不同的方法,然後一次又一次地失敗。有時候是技術層面的問題,有時候是成本太高根本行不通。那種反覆的無力感,現在回想起來還是有點難受。 ▋ Gemini

By andy

我正在做一個瘋狂的實驗:讓AI掌控我80%的線上形象,看看會發生什麼

老實跟你說,你現在看到的我—聲音、影像、文字—大部分都不是我本人。 這聽起來很詭異,我知道。但這正是重點。 我不是隨便玩玩,也不是為了作秀。我是在親身經歷一個別人都在談論、但很少有人真正去試驗的東西:如果AI能掌控你超過80%的線上生產力,會發生什麼事? ▋ 大多數人的想法都停在20% 現在很多人用AI的方式是這樣的:拿它來寫個開場、潤色個段落、幫忙生成幾張圖。AI扮演的是助手角色,人類才是主導者,還是靠人力來賺錢、維持信譽。這樣當然安全,也很聰明。 但我想知道的是另一個問題。 如果我不是偷偷用AI,而是讓它在前台直接面對你,掌控我80%以上的聲音、文字、影像表現,會怎樣?會崩潰嗎?會被識破嗎?人們會察覺不出來嗎?還是說,這樣的模式本身就會帶來一些我根本預料不到的怪事? 我沒看過有人真的這樣做過,所以我決定自己試試。 ▋ 為什麼我要這樣折騰自己 你可能會問:「為什麼?這不是自找麻煩嗎?」 確實是。但這就像任何真實的實驗一樣,你不下水,你根本不知道水溫。

By andy