andy

如何在傳統產業用 AI 勝出:3 條商業化路徑與你必須追蹤的 5 個指標

如何在傳統產業用 AI 勝出:3 條商業化路徑與你必須追蹤的 5 個指標

在 Y Combinator 的 Office Hours 中,資深創投導師針對創業者在把 AI 帶入傳統產業時最核心的兩個問題下了最直接的分析:你賣給誰?你如何獲得他們的注意?本篇深度分析整理該場談話的實務建議、具體數據與多個真實案例(包括從創業公司如何選擇路徑、如何量化自動化進程、到市場切入與招募時機),提供希望在 legacy industry 用 AI 商業化的創辦人一套可操作的決策框架。 講者歸納了三種常見路徑,並分析各自優劣: 1) 做 AI 軟體賣給業內人士(最常見) - 作法:找出「對會計師最有價值,且能在頭幾個月內實作」的子任務,做一個專精的產品並銷售給會計事務所。 - 優點:專注單一高價值功能,早期可驗證獲利模型。 - 條件:所做功能必須對客戶「夠值」,才會購買。 2) 創立自家全功能事務所(full-stack) -

By andy
如何在45分鐘內做出能抓住注意力的爆款短片?Roberto Nixon 的完整流程與工作室成本揭密

如何在45分鐘內做出能抓住注意力的爆款短片?Roberto Nixon 的完整流程與工作室成本揭密

在這集令人起雞皮疙瘩的節目中,短片創作者 Roberto Nixon 首度完整揭露他的製作流程:從靈感、逐字稿、錄製到後製暨發布的每一道細節。他是網路上少數能穩定拿到「數百萬追蹤、數以億計觀看」的短形式創作者之一,此次示範不只分享工具與技術,更揭示速度與節奏如何成為他製作「高點閱、易擴散」內容的核心競爭力。本文依循訪談內容重組,並補充必要背景說明,呈現可實作、可複製的完整操作指南與關鍵數據。 Roberto 明確指出:「短形式影片是互聯網的 bread and butter,是所有注意力的 top of funnel。」他認為短片的價值不只是資訊傳遞,而是「以極高速度捕捉注意力,並把觀眾導向更深的學習或行動」。他在訪談中強調三個製作目標的順序與重要性: - 「Capture attention」:前2秒的視覺與口語鉤子至關重要。 - 「Maintain attention」:以衝突—解決的段落設計持續牽引觀看。 - 「Reward attention」:提供實用、獨到的洞見以促成互動(

By andy

從焦慮到信任:一個月的授權噩夢,到一晚上用 Claude Code 搞定 API 串接的領悟

▋ 當初那個月,我幾乎快瘋了 說起來有點丟臉,但我得老實講——最開始串接 Facebook 和 Instagram 的發文功能時,我花了整整一個月。一個月啊,你聽起來可能覺得正常,但那一個月裡我經歷的心理狀態真的不太妙。 OAuth 授權流程、API 金鑰管理、權限設置、各種稀奇古怪的 Error Code……我每天都在官方文件和 Stack Overflow 之間切換,反覆測試、碰壁、修改參數、再碰壁。有幾次我真的坐在電腦前,盯著同一個 401 錯誤整整兩小時,想不出問題在哪裡。那種感覺很難形容,就是心裡知道「應該就快了」,但就是過不去那道檻。 問題是,不管我做再多功課,這個授權系統就像一個只會說 No 的門神,你得反覆調整每個參數,直到它願意放你進去。期間我甚至懷疑過自己是不是不適合做技術工作。 ▋ Performance API 串接時的震撼 然後這禮拜,

By andy
如何用 Sora 2 + n8n AI 代理,把影片成本降6倍、產量放大10倍?完整新手實作解析

如何用 Sora 2 + n8n AI 代理,把影片成本降6倍、產量放大10倍?完整新手實作解析

導言:Sora 2正席捲網路,能把文字、圖片、名人臉孔直接變成可上線的短影片。Nate Herk 在教學影片中示範如何把 Sora 2 與自動化工具 n8n(他稱為 NADN)串接,聲稱可以「取得10倍產出、更高品質、無浮水印,且透過 Key.ai 使用 Sora 2 比 OpenAI 直接呼叫便宜6倍」。本文將從連線設定、範例工作流程、提示工程到錯誤處理逐步解析,並以數據與引言突顯關鍵步驟,幫助你把這套系統從 Proof‑of‑Concept 做到可量產化。 * 關鍵數據:Key.ai 對 Sora 2 的收費為 1.5 美分/秒($0.

By andy

# 不會寫程式反而是優勢?為什麼Vibe Coding會是你最該投資的技能

我想跟你聊一件我最近才真正體悟的事:如果你想在未來持續提升生產力,你根本逃不掉要跟AI合作這個課題。但關鍵不是去學寫程式,反而是要學會跟AI「談戀愛」。 ▋ 你以為不會寫程式是限制,其實反而是超能力 老實說,剛開始聽到Vibe Coding這個概念時,我也有點懷疑。不會寫程式的人用AI協作?聽起來好像哪裡怪怪的。但仔細想想才發現,這恰好是我之前完全想反了的地方。 很多人問我:「欸,如果我不會寫程式,怎麼能跟AI Code一起工作?」我現在的答案是:正因為你不會寫程式,你才更有資格來做這件事。為什麼?因為你能深刻理解那些使用者痛點。你知道什麼叫「這件事很麻煩」,你知道什麼叫「其實我們需要的是這個」。而一個只會寫程式的人,有時候反而被自己的技術思維限制了,看不到使用者真正想要什麼。 你不會寫程式,所以你能在跟AI的來回對話中,一次次指出「不對,我要的是這樣」、「這邊可以再調整」。你用自己的直覺和需求不斷修正,而AI則用它的執行力去實現。這兩種優勢的結合,才是真正的超能力。 ▋ AI的能力再強,也需要一個懂它的人 這裡有個前提要弄清楚:不是隨便用任何AI都行。你得選一

By andy

Vibe Coding 是我最值得押注的未來技能——不會寫程式反而是你的優勢

我決定要好好談一次關於 Vibe Coding 這件事。不是因為它有多新潮或多高級,而是因為我最近才真正感受到——如果你想在未來維持生產力,這可能是你該認真投資的東西。 ▋ 為什麼不是學會寫程式,而是學會跟 AI「共舞」 說實話,當我第一次聽到「Vibe Coding」這個詞時,我有點困惑。這不是什麼革命性的技術,不是新的程式語言,也不是什麼複雜的工程概念。但後來我才明白——它的重點根本不是程式本身。 Vibe Coding 的核心其實是:學會跟 AI 協作。不是用 AI 來做什麼,而是真正地跟它一起工作。這意味著你要選一個 AI,可能是 Claude、ChatGPT、Gemini,或任何你覺得溝通順暢的那一個。然後你就開始——一次又一次地跟它互動,慢慢摸透它的脾氣。 就像跟任何人共事一樣。你會學到它擅長什麼、它的盲點在哪、怎麼問它才能得到最好的回答。你開始培養默契。這是需要時間的。不可能一上來就完美配合。

By andy
如何讓 ChatGPT Atlas 取代 Chrome?5 大關鍵揭露 OpenAI 新瀏覽器威力

如何讓 ChatGPT Atlas 取代 Chrome?5 大關鍵揭露 OpenAI 新瀏覽器威力

開頭導言 OpenAI 在 Sam Altman 帶領下推出的「ChatGPT Atlas」宣稱要把瀏覽器帶入「以對話為中心、可自主執行任務」的新時代。YouTuber Matt Wolfe 在發佈當日實機測試,揭露了 Atlas 的核心功能、限制與潛在風險。核心議題是:Atlas 是否真的能以自動化代理(agent)和跨域記憶(memory)取代傳統以分頁/搜尋為中心的瀏覽模式?Sam 在直播中直言:「tabs were great, but we haven't seen a lot of browser innovation since then.」(「分頁很好,但自那之後我們沒看到太多瀏覽器上的創新。」) ChatGPT Atlas

By andy
如何在 10 個指標看出 OpenAI Agent Kit 能否「扳倒」n8n?一次看懂 2 大代理人平台的勝負關鍵

如何在 10 個指標看出 OpenAI Agent Kit 能否「扳倒」n8n?一次看懂 2 大代理人平台的勝負關鍵

在最新的比較實測中,AI 自動化創作者 Nate Herk(Nate Herk | AI Automation)直言:「In short, my answer is no.」──他認為 OpenAI 在 2025-10-06 推出的 Agent Kit 並不會直接取代已存在多年的開源自動化平台 n8n(初版 2019-10-08)。本文將重組 Nate 的實測內容,逐項分析兩者在使用者門檻、觸發器、工具整合、模型支援、前端嵌入(UI)與部署控制等關鍵面向,並呈現評分數據與原文引言,供想選用或評估平台的讀者做出判斷。 * Agent Kit(OpenAI Agent Builder)發布日:2025-10-06。設計定位:以「快速、視覺化、

By andy

# N8N 還是 Claude Code?選錯一個,你會在維護時哭出來——實戰經驗談

前陣子有位網友問我一個問題,我當時停頓了一下,因為我意識到這個問題問得很好。他問:「到底什麼時候該用 N8N,什麼時候該用 Claude Code?」 我一開始想給出一個簡單的答案,但後來發現——其實沒有簡單答案。真正的分水嶺,不在工具本身,而在於你後來會怎麼活著跟這個東西相處。 ▋ 關鍵不是技術,是你的記憶 想像一下這個場景:你今天花了整個下午設計一個自動化流程。邏輯很複雜,涉及多個 API 串接、條件判斷、資料轉換。當時你腦子很清楚,一切都有道理。然後一周後,你的主管說:「欸,那個流程能不能改一下?」 你打開檔案。看著自己寫的程式碼或配置。三秒鐘後,你的腦子一片空白。 「我當時為什麼要這樣設定?」 這時候,如果你用的是 N8N,你會慶幸自己的決定。因為整個流程就像樂高積木一樣擺在你面前,一眼就能看懂每一步在幹什麼。「啊,這裡是連接 Google Sheets,那裡是做資料過濾,這邊是呼叫 AI API。

By andy

# 我用 Gemini API 破解了 YouTube 影片秒找關鍵畫面的問題——花了一年才想通的事

在我開始用 Gemini 的 API 之前,我其實在這個問題上卡了很久。你知道那種感覺嗎?就是你明確知道自己想要什麼,但市面上的工具就是不給你。 ▋ 那些沒辦法的時代 最一開始,我想做的事很簡單——從 YouTube 影片裡自動找出特定的畫面。聽起來沒什麼,但當你開始想要把它實際執行出來的時候,馬上就撞牆了。OpenAI 的模型?它們根本不讓你直接處理影片內容。Anthropic 的 Claude?同樣的問題,他們也會限制你對影片的存取權限。就像被隔著一層玻璃,明明看得到東西卻摸不著。 我試過各種繞路。有段時間我想用影片截圖搭配 OCR 去識別,但那效率慘到不行。也想過自己寫爬蟲去抓影片的文字敘述檔,但 YouTube 上大多影片根本沒有,或者敘述檔品質爛到不能用。那段時間我真的很挫折,感覺就像在黑暗裡摸索,不知道哪條路才是出口。 大概花了快要一年的時間,我一直在想同一個問題,嘗試不同的方法,然後一次又一次地失敗。有時候是技術層面的問題,有時候是成本太高根本行不通。那種反覆的無力感,現在回想起來還是有點難受。 ▋ Gemini

By andy

我正在做一個瘋狂的實驗:讓AI掌控我80%的線上形象,看看會發生什麼

老實跟你說,你現在看到的我—聲音、影像、文字—大部分都不是我本人。 這聽起來很詭異,我知道。但這正是重點。 我不是隨便玩玩,也不是為了作秀。我是在親身經歷一個別人都在談論、但很少有人真正去試驗的東西:如果AI能掌控你超過80%的線上生產力,會發生什麼事? ▋ 大多數人的想法都停在20% 現在很多人用AI的方式是這樣的:拿它來寫個開場、潤色個段落、幫忙生成幾張圖。AI扮演的是助手角色,人類才是主導者,還是靠人力來賺錢、維持信譽。這樣當然安全,也很聰明。 但我想知道的是另一個問題。 如果我不是偷偷用AI,而是讓它在前台直接面對你,掌控我80%以上的聲音、文字、影像表現,會怎樣?會崩潰嗎?會被識破嗎?人們會察覺不出來嗎?還是說,這樣的模式本身就會帶來一些我根本預料不到的怪事? 我沒看過有人真的這樣做過,所以我決定自己試試。 ▋ 為什麼我要這樣折騰自己 你可能會問:「為什麼?這不是自找麻煩嗎?」 確實是。但這就像任何真實的實驗一樣,你不下水,你根本不知道水溫。

By andy

別再追風口了——我如何從「快速出產品」的狂歡中走出來,轉向解決自己真正的問題

▋ 那段沉迷「快速出貨」的日子 說實話,當 Vibe Coding 火起來的時候,我也被那種感覺迷住了。能用 AI 這麼快速地把腦子裡的想法變成產品,那種成就感真的滿到爆炸。我記得有一陣子,我幾乎每週都在做新東西——今天做個 X 功能,明天改個 Y 工具,後天又琢磨起 Z 的變體。身邊的人都在說「哇,你動作好快」,我自己也覺得特別充實,彷彿在衝浪一樣踩著科技浪潮的尖端。 但你知道嗎?那種快不是充實,只是上癮。 我現在還記得最清楚的一個例子——我看到有人用生成式 AI 做出超厲害的產品推介功能,能把一堆圖片一鍵轉成專業級的電商影片。那時候我眼睛都亮了,馬上想「這個我也能做,而且我能做得更好」。花了一個禮拜把 MVP 整出來,還挺自豪的。然後呢?Google 用 Nano Banana

By andy